Bias Correction and Bayesian Model Averaging for Ensemble Forecasts of Surface Wind Direction
نویسندگان
چکیده
Wind direction is an angular variable, as opposed to weather quantities such as temperature, quantitative precipitation, or wind speed, which are linear variables. Consequently, traditional model output statistics and ensemble postprocessing methods become ineffective, or do not apply at all. This paper proposes an effective bias correction technique for wind direction forecasts from numerical weather prediction models, which is based on a state-of-the-art circular–circular regression approach. To calibrate forecast ensembles, a Bayesian model averaging scheme for directional variables is introduced, where the component distributions are von Mises densities centered at the individually bias-corrected ensemble member forecasts. These techniques are applied to 48-h forecasts of surface wind direction over the Pacific Northwest, using the University of Washington mesoscale ensemble, where they yield consistent improvements in forecast performance.
منابع مشابه
Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging
Probabilistic forecasts of wind speed are becoming critical as interest grows in wind as a clean and renewable source of energy, in addition to a wide range of other uses, from aviation to recreational boating. Statistical approaches to wind forecasting offer two particular challenges: the distribution of wind speeds is highly skewed, and wind observations are reported to the nearest whole knot...
متن کاملProbabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging
Probabilistic forecasts of wind vectors are becoming critical as interest grows in wind as a clean and renewable source of energy, in addition to a wide range of other uses, from aviation to recreational boating. Unlike other common forecasting problems, which deal with univariate quantities, statistical approaches to wind vector forecasting must be based on bivariate distributions. The prevail...
متن کاملJoint probabilistic forecasting of wind speed and temperature using Bayesian model averaging
Ensembles of forecasts are typically employed to account for the forecast uncertainties inherent in predictions of future weather states. However, biases and dispersion errors often present in forecast ensembles require statistical post-processing. Univariate post-processing models such as Bayesian model averaging (BMA) have been successfully applied for various weather quantities. Nonetheless,...
متن کاملLong-range experimental hydrologic forecasting for the eastern United States
[1] We explore a strategy for long-range hydrologic forecasting that uses ensemble climate model forecasts as input to a macroscale hydrologic model to produce runoff and streamflow forecasts at spatial and temporal scales appropriate for water management. Monthly ensemble climate model forecasts produced by the National Centers for Environmental Prediction/Climate Prediction Center global spec...
متن کاملLong Range Experimental Hydrologic Forecasting for the Eastern U.s
We explore a strategy for long-range hydrologic forecasting that uses ensemble climate model forecasts as input to a macroscale hydrologic model to produce runoff and streamflow forecasts at spatial and temporal scales appropriate for water management. Coarse-scale monthly ensemble climate model forecasts produced by the NCEP/CPC Global Spectral Model (GSM) are bias corrected, downscaled to 1/8...
متن کامل